‘A realistic approach to the development of autonomous ships and the law’ by Professor Johan Schelin

An expert on artificial intelligence once said that nothing is as difficult as trying to foresee the future, especially when it comes to technological developments and their significance. In the late 1960 and early 1970s people were very fascinated by space and landing on the moon. Some experts even predicted that in the near future ordinary cars would be replaced by small personal rockets. However, few experts foresaw that fifty years later people would devote much of their time to a small device called a smart phone, chatting and looking at media published on social platforms like Facebook, Instagram, Snapchat and Tik Tok. There seems to be a tendency to both overestimate and underestimate technological developments. Most likely we will see the same thing with the development of autonomous ships. Some experts predict a future where goods will be carried on board totally unmanned ships and goods will automatically be loaded and discharged in automated harbours.

Although we may very well develop the technology for this, other factors such as the capital and labour costs, ship and cargo safety, available infrastructure and acceptance by the public are important when it comes to the commercial use of autonomous ships. Unlike with the operation of autonomous ships for military purposes, a commercial ship owner will always have to take these factors into account.

Remotely controlled or fully autonomous ships will most likely be expensive to operate. Today a lot of maintenance work is carried out by people working on board while the ship is at sea e.g. parts of the machinery are replaced, the deck is painted. A remotely controlled or fully autonomous ship will instead have to be brought to a ship yard or a dock for such maintenance. Circulating a maintenance crew between autonomous ships in a company fleet would also be difficult since equipment on board one ship may break down suddenly at sea while the crew is working on board another ship. In addition, ships are often one of a kind structures which means that the maintenance work on board requires specific knowledge of the ship in question. It is, of course, possible to argue that in the future ships may be constructed in a way that minimises the maintenance required or that such work could be carried out by robots. However, materials that require no or little maintenance and advanced robots that can carry out many different tasks on board (if available at the market at all) tend to be expensive. In the end, all investments of this kind must be weighed against the benefits of human labour from countries with low labour costs doing the same work.  

In addition, a ship owner must consider that the sea is an environment of a very dynamic character. Hurricanes, storms and ice may affect the ship during the voyage. Equipment may suddenly break down, a storm may cause a displacement of the cargo, the main deck may get covered with heavy ice such that the ship is at risk of capsizing. These are risks that can be avoided with a crew on board, but which are difficult to manage on board a remotely controlled or fully autonomous ship. Also, the traffic situation must be considered. Parts of a ship’s journey often take place in sea areas with heavy traffic. If a fully autonomous ship causes a collision as a result of a deficiency in the navigational equipment there is a risk that not only the ship owning company will be liable for the damage but also the manufacturer of the equipment (due to product liability). It remains to be seen whether manufacturers are willing to bear that risk.

Remotely controlled and fully autonomous ships will also be dependent on a developed port infrastructure. This is illustrated by the so-called m/v Yara Birkeland project in Norway. Yara Birkeland is a fully autonomous ship which operates between two ports specifically designed for the purpose. However, many ports, especially in developing countries, lack such infrastructure. This makes it more difficult to operate remotely controlled or fully autonomous ships in the tramp trade.

Another factor of importance is whether unmanned remotely controlled or fully autonomous passenger ships will be accepted by the public. Even during short ferry trips, events may occur on board that require the crew to act e.g. passengers may fall over board or get injured. In comparison, it is possible today to technically construct a remotely controlled or fully autonomous aircraft, but at the same time there is a risk that many passengers would be hesitant to board such an aircraft. If something goes wrong, people still want a pilot to be there.

In light of the rapid development of autonomous ships, the International Maritime Organization (IMO) is now reviewing the international legislation on the manning of ships. Considering all the factors discussed above, it seems that a more realistic legislative approach at the international level at this stage would be to give priority to the development of new rules regarding periodic unmanned bridges rather than discussing rules on remotely controlled or fully autonomous ships. It also seems that tomorrow the need for humans on board most ships in international trade will remain.

Professor Johan Schelin is a Professor of Maritime and Transport Law at Stockholm University and is the Director of the Axel Ax:son Johnson Institute for Maritime and Transport Law.

Leave a Reply

Your email address will not be published.